Identification of two novel Rhizoctonia solani-inducible cis-acting elements in the promoter of the maize gene, GRMZM2G315431

نویسندگان

  • Ning Li
  • Jing Chen
  • Fangfang Yang
  • Shutong Wei
  • Lingguang Kong
  • Xinhua Ding
  • Zhaohui Chu
چکیده

Plants are continuously exposed to myriad pathogen stresses. However, the molecular mechanisms by which these stress signals are perceived and transduced are poorly understood. In this study, the maize gene GRMZM2G315431 was identified to be highly inducible by Rhizoctonia solani infection, suggesting that the promoter of GRMZM2G315431 (pGRMZM2G315431) might contain a specific cis-acting element responsive to R. solani attack. To identify the R. solani-responsive element in pGRMZM2G315431, a series of binary plant transformation vectors were constructed by fusing pGRMZM2G315431 or its deletion-derivatives with the reporter genes. In the transient gene expression system of Nicotiana benthamiana leaves inoculated with R. solani, GUS quantification suggested that the DNA fragment contains the unknown pathogen-inducible cis-elements in the -1323 to -1212 region. Furthermore, detailed quantitative assays showed that two novel cis-elements, GTTGA in the -1243 to -1239 region and TATTT in the -1232 to -1228 region, were responsible for the R. solani-inducible activity. These two cis-elements were also identified to have R. solani-specific-inducible activity in stable transgenic rice plants, suggesting the existence of a novel regulation mechanism involved in the interaction between R. solani and Zea mays.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Selectable Marker Gene Removal and Expression of Transgene by Inducible Promoter Containing FFDD Cis-Acting elements in Transgenic plants

Abstract Background: Selectable marker gene (SMG) systems are critical for generation of transgenic crops. Transgenic crop production Background: Selectable marker gene (SMG) systems are critical for generation of transgenic crops. Transgenic crop production without using SMG is not economically feasible. However, SMGs are non-essential once an intact transgenic plant has been established. Eli...

متن کامل

Expression Pattern of the Synthetic Pathogen-Inducible Promoter (SynP-FF) in the Transgenic Canola in Response to Sclerotinia sclerotiorum

Sclerotinia sclerotiorum is a phytopathogenic fungus which causes serious yield losses in canola. A pathogen inducible-promoter can facilitate the production of Sclerotinia-resistant transgenic canola plants. Inthis study, the “gain of function approach” was adopted for the construction of a pathogen-inducible promoter.The synthetic promoter technique was used, which involved the in...

متن کامل

Transformation of Potato (Solanum tuberosumcv.Savalan) by Chitinase and β-1,3-Glucanase Genes of Myco-Parasitic Fungi Towards Improving Resistance to Rhizoctonia solani AG-3

Potato (Solanum tuberosum L.) an agro-economically important food crop in the world, is sensitive to many fungal pathogens including Rhizoctonia solani (AG-3), the causal agent of stem and root rot diseases. Chitinase and glucanase are cell wall degrading enzymes which have been shown to have high antifungal activity against a wide range of phytopathogenic fungi. In the present study, plasmid p...

متن کامل

Identification, isolation and bioinformatics analysis of specific tuber promoter in plants

     In this study, in order to find the suitable tuber promoter, an experiment was conducted in Shahid Beheshti University in 2018. For this purpose, promoter sequences of different tuberous plants were searched at NCBI. Sequences were multiple-aligned and the target primers designed from conserved regions. PCR analysis confirmed the presence of the desired promoter in plants of sweet potato a...

متن کامل

Network-based transcriptome analysis in salt tolerant and salt sensitive maize (Zea mays L.) genotypes

Identification of genes involved in salinity stress tolerance provides deeper insight into molecular mechanisms underlying salinity tolerance in maize. The present study was conducted in the faculty of agriculture of Urmia university, Iran, in 2018, with the aim of identifying genetic differences between two maize genotypes in tolerance to salinity stress, and the results of gene expression wer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017